Inhibition of Gibberellin Production in the Fungi Gibberella fujikuroi and Sphaceloma manihoticola by Plant Growth Retardants.

نویسنده

  • W Rademacher
چکیده

The effect of different types of plant growth retardants on fungal gibberellin (GA) formation has been studied in cultures of Gibberella fujikuroi and Sphaceloma manihoticola. Quaternary ammonium compounds (chlormequat chloride, mepiquat chloride, Amo-1618), triazoles (uniconazole and several experimental compounds), and the norbornanodiazetine tetcyclacis inhibited GA biosynthesis in both fungal species. Concentrations between 2 x 10(-4) and 10(-9)m were required for a 50% inhibition of the production of gibberellin A(3) in Gibberella fujikuroi and of giberellin A(4) in Sphaceloma manihoticola. The formation of other prominent GAs was affected at a similar degree of intensity. Tetcyclacis was the most active compound in both fungi. Compared to the growth retardants mentioned above, the biological activity of chlorphonium chloride was low. The acylcyclohexanediones prohexadione and LAB 198 999 had virtually no activity. Most likely, this lack of activity is due to a rapid metabolism of the compounds in the cultures. For the triazole-type compounds and tetcyclacis, a relatively distinct correlation exists in their ability to inhibit GA formation in fungal cultures, to block ent-kaurene oxygenase in a cell-free system, and to reduce shoot growth of rice seedlings. Due to differences in their metabolic fate and species specificities, such conclusions cannot be made for the other compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Gibberellin Biosynthesis in Gibberella fujikuroi.

Gibberellin production by Gibberella fujikuroi started only after the nitrogen source was depleted and ceased upon its renewal. Nitrogen repression of gibberellin biosynthesis is not an indirect effect of the growth arrest that follows the depletion of an essential nutrient because gibberellins were not produced upon depletion of phosphate. Mycelia produced gibberellins when suspended in a gluc...

متن کامل

Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks.

Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce...

متن کامل

Biosynthesis of Plant Hormones by Microorganisms

Higher plants are exposed to a multitude of fungi and bacteria, which are present in the surrounding phyllosphere and rhizosphere and which may also grow inside the shoot and the root. Compounds, known to act as hormones in higher plants, are produced by many of these microorganisms and are often functionalized in “friendly” or “hostile” interaction with the respective host plant. A large numbe...

متن کامل

Loss of gibberellin production in Fusarium verticillioides (Gibberella fujikuroi MP-A) is due to a deletion in the gibberellic acid gene cluster.

Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well-known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the Gibberella fujikuroi species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex ...

متن کامل

The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis.

Recent studies have shown that the genes of the gibberellin (GA) biosynthesis pathway in the fungus Gibberella fujikuroi are organized in a cluster of at least seven genes. P450-1 is one of four cytochrome P450 monooxygenase genes in this cluster. Disruption of the P450-1 gene in the GA-producing wild-type strain IMI 58289 led to total loss of GA production. Analysis of the P450-1-disrupted mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 1992